РАЗРАБОТКА ТРЕХПОЛОСНОЙ АКУСТИЧЕСКОЙ СИСТЕМЫ НА
ОСНОВЕ ТРАНСМИССИОННОЙ ЛИНИИ ДЛЯ ДОМАШНЕГО
КИНОТЕАТРА

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
1. АКУСТИЧЕСКЕ ОФОРМЛЕНИЕ НА ОСНОВЕ
ТРАНСМИССИОННОЙ ЛИНИИ4
2. РАЗРАБОТКА АКУСТИЧЕСКОЙ СИСТЕМЫ НА ОСНОВЕ
ТРАНСМИССИОННОЙ ЛИНИИ7
2.1 Совершенствование конструкции трансмиссионной линии
2.2 Моделирование классической и усовершенствованной
трансмиссионной линии
2.3 Разработка и расчет трехполосного пассивного фильтра
2.4 Измерение собранной акустической системы
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК16

ВВЕДЕНИЕ

Актуальность данной работы заключается в разработке современной, профессиональной И высококачественной пассивной трехполосной акустической системы класса High-End. Главное отличие акустических систем класса High-End от распространенного класса Hi-Fi состоит в том, что разработчики не подгоняют ключевые параметры акустической системы под стандарты с конкретными показателями качества, а в первую очередь отталкиваются от естественного звучания акустической системы. В данной работе конструкция акустической системы будет разработана на основе трансмиссионной линии, которая в отличие от других популярных акустических оформлений с фазоинвертором или закрытым корпусом должна повысить точность воспроизведения на низких частотах и расширить полосу пропускания частот. Правильно сконструированная трансмиссионная линия разрабатываемой акустической системы позволит воспроизводить глубокие и чистые звуковые составляющие баса при объеме меньшем корпуса, чем у распространенных акустических оформлений.

Практическая значимость разрабатываемой акустической системы объясняется тем, что она позволит воспроизводить звук с наилучшим качеством, что позволит в условиях домашнего кинотеатра воссоздавать творческие и художественные идеи музыкантов и звукорежиссеров с максимальной естественностью, эмоциональностью и силой при просмотре телевидения или кинопроизведений. Ведь чем выше качество воспроизведения звука, тем глубже будет погружение зрителя.

1. АКУСТИЧЕСКЕ ОФОРМЛЕНИЕ НА ОСНОВЕ ТРАНСМИССИОННОЙ ЛИНИИ

Диффузор электродинамического громкоговорителя создает деформацию воздушной среды необходимую для излучения звуковых волн, возникающих в результате избыточного давления сжатия и разрежения молекул воздуха, распространяющегося с конечной скоростью звука, равной с = 343 м/с при нормальных условиях [1]. Однако появление таких деформаций в полной мере зависит не только от громкоговорителя и свойств среды, но и от акустического оформления.

Акустическое оформление – это конструктивное решение корпуса акустической системы, позволяющее эффективно улучшить характеристику излучения ЗВУКОВЫХ волн ИЗ громкоговорителя окружающее воздушное пространство [2]. Без акустического оформления на значительно низких частотах колебаний диффузора, радиус которого меньше длины излучаемой звуковой волны, происходит выталкивание передней стороны диффузора, а затем воздуха от моментальное стороной диффузора. затягивание воздуха тыльной Возникающее физическое явление в теории упругих волн называется дифракцией огибание излучаемой звуковой волны вокруг диффузора, диаметр которого меньше или равен её длине. Дифракция излучаемых звуковых волн вокруг излучателя происходит как с передней, так и с тыльной стороны диффузора, но сами эти волны будут находится в противофазе к друг другу. В результате чего мощность этих звуковых волн при огибании диффузора будет стремится к нулю из-за противофазного сложения звукового давления. Данный процесс имеет технический термин – акустическое короткое замыкание [3].

При разработке современных акустических систем применяются три различных вида акустических оформлений, которые позволяют полностью

устранить акустическое короткое замыкание: закрытый ящик, фазоинвертор и трансмиссионная линия.

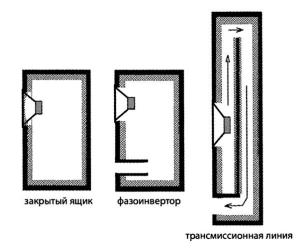


Рисунок 1 — Виды трех самых эффективных акустических оформлений для громкоговорителя низких частот [4]

На рисунке 2 представлено моделирование в программе LTspice амплитудно-частотной характеристики в виде отклика системы в районе низких частот для трех перечисленных акустических оформлений. Все системы используют параметры одного и того же громкоговорителя низких частот и имеют одинаковый параметры корпусов. Спад закрытого ящика составляет 12 дБ/октаву, у фазоинвертора — 24 дБ/октаву, а у трансмиссионной линии — 14 дБ/октаву. Резонанс на частоте 87 Гц у трансмиссионной линии затухает более плавно, чем у фазоинвертора. Также стоит отметить, что трансмиссионная линия имеет немного большую полосу пропускания в районе самых низких частот, чем фазоинвертор [5].

В результате можно сделать вывод, что конструкция трансмиссионной линии для оформления громкоговорителей нижних частот ничем не хуже закрытого ящика и фазоинвертора, а в некоторых аспектах даже лучше. Смоделированный отклик амплитудно-частотной характеристики показал, что трансмиссионная линия обладает всеми преимуществами двух других оформлений, а именно плавным спадом 14

дБ/октаву, практически как у закрытого ящика, и расширенной полосой пропускания частот, как у фазоинвертора, однако с резонансной частотой громкоговорителя трансмиссионная линия справляется лучше.

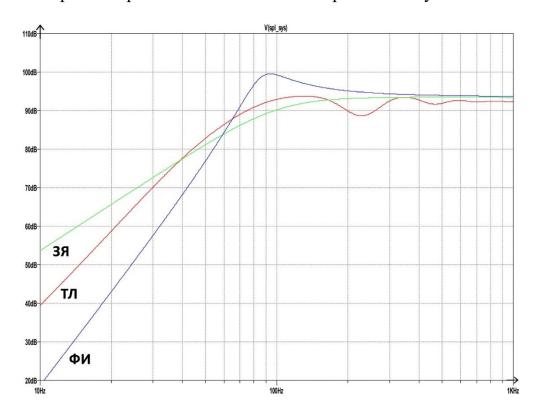


Рисунок 2 – АЧХ трех оформлений: закрытый ящик (ЗЯ), фазоинвертор (ФИ) и трансмиссионная линия (ТЛ) [5]

Акустическое оформление на основе классической трансмиссионной линии представляет из себя открытый волновод длиной l с площадью поперечного сечения S. На одном из входов волновода тыльной стороной установлен громкоговоритель нижних частот. Для уменьшения размеров корпуса акустической системы волновод «сворачивают» с помощью специальных перегородок, в результате чего получается компактное акустическое оформление. Колеблющиеся частицы воздуха на выходе трансмиссионной лини будут интенсивно излучать сферическую волну в окружающее пространство подобно поршню под воздействием давления воздуха в волноводе. При резонансной частоте колебания диффузора громкоговорителя будут минимальны из-за резонанса простой механической колебательной системы в области низких частот, в тоже время недостающие частоты будут излучаться в виде сферических звуковых волн на выходе трансмиссионной линии [6].

2. РАЗРАБОТКА АКУСТИЧЕСКОЙ СИСТЕМЫ НА ОСНОВЕ ТРАНСМИССИОННОЙ ЛИНИИ

2.1 Совершенствование конструкции трансмиссионной линии

Однако распространенная классическая модель трансмиссионной линии имеет существенные недостатки. Выходное отверстие волновода трансмиссионной линии на частотах выше резонансной частоты громкоговорителя НЧ продолжает излучать сферическую звуковую волну с резонансами на частотах 3c/4l, 5c/4l, 7c/4l и т.д., где l – длина волновода. Такие резонансы для трансмиссионной линии нежелательны, так как они приводят к большим провалам и нелинейностям АЧХ. С ними можно бороться звукопоглощающим материалом используя демпфирование внутренних стенок. Однако для максимального избавления от них можно сконструировать акустическое оформление в виде сужающего волновода с определенно рассчитанной длиной трансмиссионной линии [4].

На рисунке 3 показана конструкция трехполосной акустической системы со сужающимся волноводом на выходе трансмиссионной линии, а также диаметр отверстия для громкоговорителя низких частот и размеры квадратного выходного отверстия. Рассчитаем площадь S_0 занимаемой громкоговорителем низких частот и площадь S_1 выходного отверстия:

$$S_0 = \frac{20^2 \cdot \pi}{4} = 314,16 \text{ cm}^2; S_l = 15 \cdot 15 = 225 \text{ cm}^2$$

Расчет длины трансмиссионной линии при резонансной частоте f_0 = 30 Гц будет производиться по следующей формуле, которая учитывает коэффициент сужения волновода [4]:

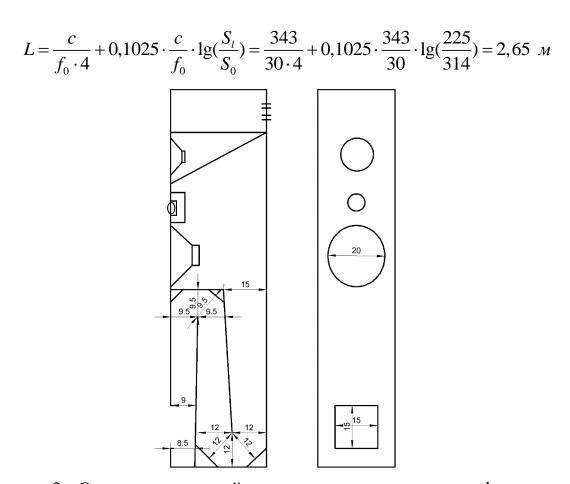


Рисунок 3 — Эскиз предлагаемой конструкции акустического оформления на основе трансмиссионной линии

2.2 Моделирование классической и усовершенствованной трансмиссионной линии

Используя полученные значения, смоделируем классическую трансмиссионную линию и трансмиссионную линию предлагаемой конструкции в симуляторе SpicyTL программного обеспечения LTspice.

По полученным результатам моделирования на рисунке 4 можно сделать вывод, что предложенная конструкция акустического оформления на основе трансмиссионной линии позволяет расширить в частотной области диапазон пропускаемых низких частот до частоты среза 30 Гц, в отличие от классической трансмиссионной линии, у которой частота среза 42 Гц. Это позволяет более точно и высококачественно воспроизводить звук, содержащий низкие частоты. В том числе данная конструкция понижает размах резонансов и антирезонансов на амплитудно-частотной

Таким образом характеристике. масса подвижной системы громкоговорителя значительно увеличивается на величину массы воздуха в волноводе трансмиссионной линии. Использование данной конструкции более позволяет получить равномерную амплитудно-частотную характеристику звукового классической сигнала чем модели трансмиссионной линии.

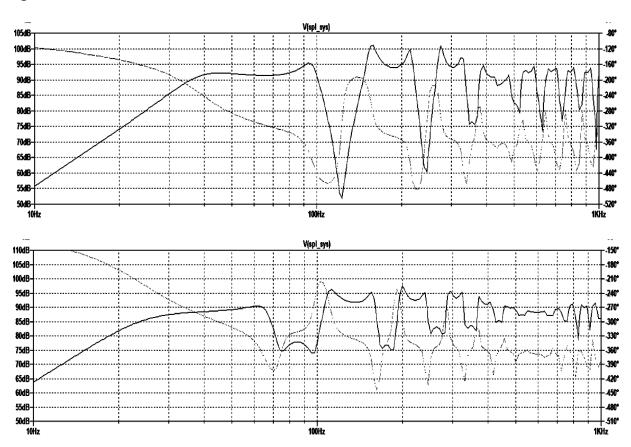


Рисунок 4 — Моделирование классической и предложенной конструкции трансмиссионной линии

2.3 Разработка и расчет трехполосного пассивного фильтра

Перед разработкой и расчетом разделительных фильтров, нужно определиться с правильным выбором трех электродинамических громкоговорителей. В роли громкоговорителя низких частот был выбран высококачественный Woofer Scan-Speak 21W/8555-00 серии Classic, который обладает очень низкой резонансной частотой, большим линейным смещением диффузора — 6,5 мм и минимальными механическими

потерями, что обеспечит расширение полосы пропускания и точность воспроизведения звука в области самых низких частот, используя в качестве акустического оформления – трансмиссионную линию [7].

Громкоговоритель средних частот — высококачественный Midrange Scan-Speak D7608/920010 серии Discovery, который имеет линейную частотную характеристику и у него полностью отсутствуют резонансы на широком диапазоне пропускания частот [7].

Рисунок 5 – Громкоговорители низких, средних и высоких частот [7]

В роли высококачественного громкоговорителя высоких частот был выбран купольный Tweeter Scan-Speak R2904/700009 серии Revalator, преимущество которого заключается в широкой диаграмме направленности, сбалансированной и линейной частотной характеристики с удивительно высокой чувствительностью, что объясняется уменьшением индуктивности звуковой катушки с помощью большого количества меди в зазоре магнита — над полюсным сердечником и снаружи воздушного зазора.

Изучив АЧХ и зависимости модуля полного сопротивления от частоты всех трех громкоговорителей, определим их диапазон полосы пропускания частот, при котором громкоговоритель максимально эффективно воспроизводит звуковой: громкоговоритель НЧ от 40 Гц до 400 Гц; громкоговоритель СЧ от 325 Гц до 5 кГц; громкоговоритель ВЧ от

4,5 к Гц до 22 кГц. Тогда выберем следующие частоты среза для разделительных фильтров будут равны: 356 Гц и 4968 Гц.

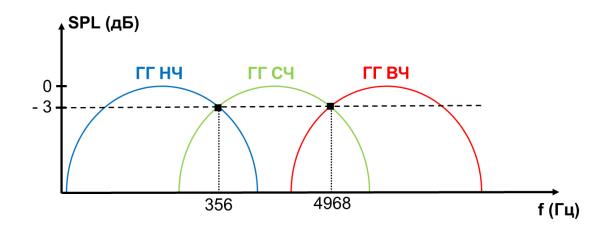


Рисунок 6 – Эскиз трехполосной АЧХ громкоговорителей низких, средних и высоких частот, полученных с помощью разделительных фильтров

Теперь перейдем к расчету и разработке трехполосного пассивного фильтра, состоящего из трех разделительных фильтров, прототипом которых будет фильтр всепропускающего типа второго порядка. Такой тип фильтра позволяет получить гладкую результирующую амплитудночастотную характеристику в области частоты среза, одинаковую форму фазо-частотной характеристики, меньший уровень фазовых искажений и симметричные диаграммы направленности в области разделительных частот. На основе фильтров-прототипов рассчитаем значения элементов разделительных фильтров нижних, средних и верхних частот [8]:

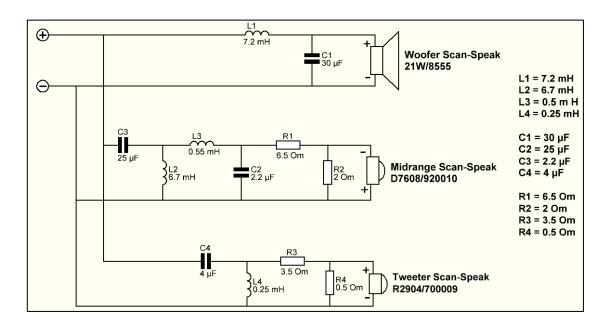


Рисунок 7 – Электрическая схема трехполосного пассивного фильтра

2.4 Измерение собранной акустической системы

Используя эскиз на рисунке 3, соберем конструкцию корпуса акустичсекой системы на основе трансмиссионной ЛИНИИ древесноволокнистой плиты средней плотности (МДФ) толщиной 16 и 25 MM. Стенки волновода обклеяны звукопоглащающим материалом плотностью 35 кг/м³. Установим все три громкоговорителя и подключим к собранному фильтру по схеме на рисунке 7. Подключим акустическую систему согласно блок-схеме на рисунке 8 и проведем замеры амплитудно-частотной характеристики белого шума с помощью шумомера 1-го класса точности ACCИСТЕНТ TOTAL. Результаты представлены на рисунке 9.

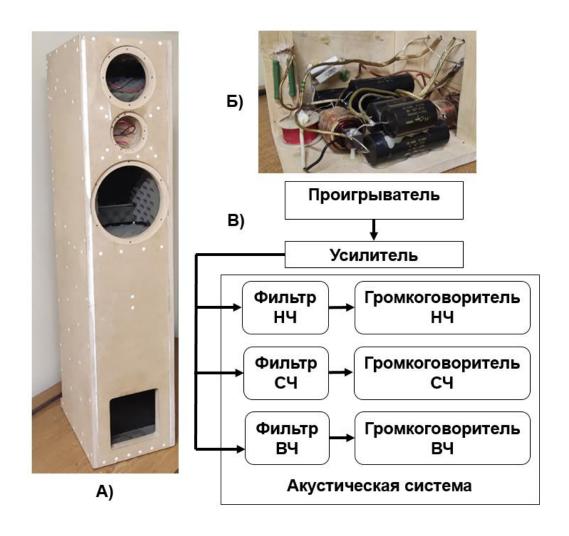


Рисунок 8 – Собранный корпус АС (A) и фильтр (Б), блок-схема подключения акустической системы (B)

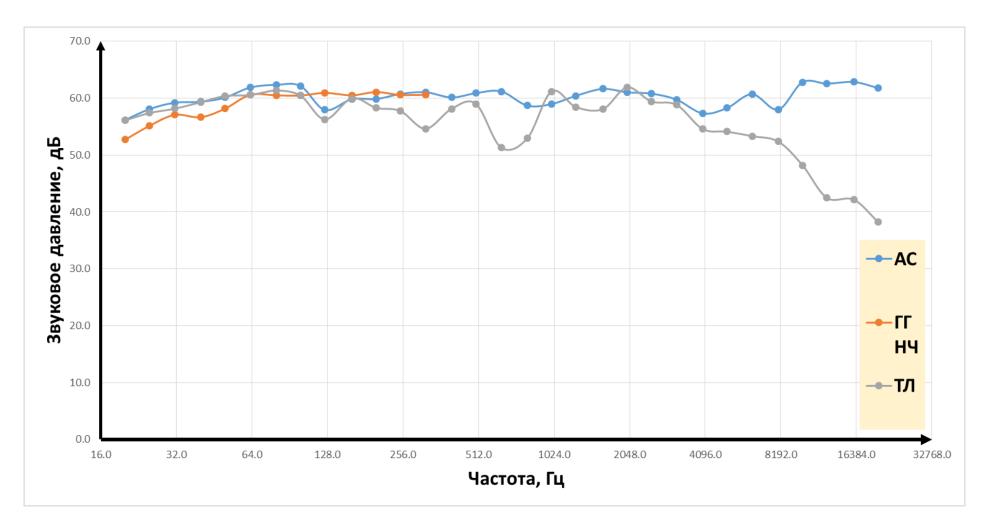


Рисунок 9 — Результаты измерений AЧX излучения громкоговорителя низких частот и выходного отверстия трансмиссионной линии, а также результирующая AЧX трехполосной акустической системы

ЗАКЛЮЧЕНИЕ

АЧХ собранной Представленные результаты измерений трехполосной акустической системы показывают три зависимости звукового давления от частоты: громкоговорителя низких частот, выхода трансмиссионной линии и всей трехполосной акустической системы. Предложенная конструкция трансмиссионной линии, суженной на выходе, позволяет расширить диапазон полосы пропускания в области низких частот до 30 Гц и дает возможность получить более равномерную частотную характеристику на самых низких частотах. Незначительный спад результирующей характеристики на частоте 125 Гц объясняется первой резонансной частотой 3c/4l трансмиссионной линии, с который как правило довольно сложно справиться. Однако данный спад находится в пределах нормы равномерности частотной характеристики, благодаря правильному выбору звукопоглощающего материала определенной плотности.

Результирующая амплитудно-частотная характеристика всей трехполосной акустической системы определяется суммированием частотных характеристик трех громкоговорителей, у которых частота среза определяется как частота, на которой значение коэффициента передачи частотной характеристики пассивного фильтра данного громкоговорителя падает до значения 0.707 от своей постоянной величины (0 дБ) в полосе пропускания, то есть на - 3 дБ. Именно в этих пределах находятся измеренные значения звукового давления на все полосе пропускания частот, что подтверждает эффективную работу собранной акустической системы на основе трансмиссионной линии.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Скорость звука. Большая российская энциклопедия. [Электронный ресурс] URL: https://old.bigenc.ru/physics/text/3624120 (Дата обращения 26.04.2023)
- 2. Ефимов А.П., Никонов А.В., Сапожков М.А., Шоров В.И. Акустика: Справочник. – М: Радио и связь, 1989. – 336 с.
- 3. Акустическое короткое замыкание [Электронный ресурс] URL: https://studfile.net/preview/9503560/page:29/ (Дата обращения 16.04.2023)
- 4. Гапоненко С.В. Акустические системы своими руками. СПб.: Наука и Техника, 2013. 240 с.
- 5. Other Systems Compared [Электронный ресурс] URL: https://transmissionlinespeakers.com/en/articles/other-systems-compared/ (Дата обращения 13.03.2023)
- Алдошина И.А., Вологдин Э.И., Ефимов А.П. и др. Электроакустика и звуковое вещание. Учебное пособие для вузов. – М.: Горячая линия-Телеком, Радио и связь, 2007. – 872 с.
- 7. Параметры громкоговорителей НЧ, СЧ и ВЧ. [Электронный ресурс] URL: www.arkada.com (Дата обращения 13.03.2023)
- 8. Алдошина И.А., Войшвилло А.Г. Высококачественные акустические системы и излучатели. М.:Радио и связь, 1985. 166 с.